Not all wafer maps have well defined names. Very often users simply refer to "map" file which really does not help in identifying the format. Below we define the map formats support for input by WaferMap Convert v2.0 and associate a name with each. We also provide a small sample which would enable one to identify where a file matches the format.
We call this ASY only because the sample files provided end in .asy. We don't know what machine generates these files and we did not receive any format documentation on this format. But it is simple enough to guess the various parameters.
Since no bin codes are defined in the header we assume that: F=FAIL, 1=PASS and M=REFERENCE
Header
Flat_Notch : Down Location of the flat or notch (0=bottom) Product A0000A Product (aka Device) ID Lot A200000 Wafer Lot Number Wafer 01 Wafer Number Date 2017-11-17 10:18 Date Probed (guessing) Number of good dies 13199 Good Die count Good die = Bin 1,Bin 1 Bin Code for Good Die Reference die = M reference die marked with bin code M Nlines: 145 number of rows in the array Ncols: 120 number of columns in the array
Map Section
The header is followed by the map.
...........................................FFFFFFFFFFFFFFF.................................... .....................................1111111111111111111111111................................ ...................................F111111111111111111111111111111............................ .................................F111111111111111111111111111111111111........................ ..............................F1111111111111111111111111111111111111111....................... ............................F11111111111111111111111111111111111111111111..................... ..........................11F111111111111111111111111111111111111111111111.................... ..........................111111111111111111111111111111111111111111111F11.................... ..........................1111111111111111111111111F1111111111111111111111....................
We call this EM(Map) because of the source of this map file along with the extension ".map" of the sample files. Again we found no "formal" name nor do we know what equipment (likely a prober) produced this output.
Based on examining the data we believe: .=NULL, 0=FAIL, 1=PASS, R=REFERENCE
WaferId: 811175905A2 wafer ID; likely includes LotID and Wafer ID Flat/Notch: Down location of flat or notch MaxXY: 179 214 number of columns/rows TotDie: 26809 total die (not including NULL) Tested: 26809 number of die tested Pickable: 23789 number of die that can be picked ....................................................................000000000000000000000000 .................................................................000000000000000000000000000 ..............................................................000000000000000000000000000000 ............................................................00000000000000000000000000100001 ..........................................................0000000000010000000000000000001011 ........................................................000000000000000110010000111110100001 ......................................................00000000001011100101111111111111011110 ....................................................0000000001100111000101111111111111101111 ...................................................00000000101100111111111111111111111111111 .................................................0000000R11011111101111111111110110111111111 ................................................00000011000111011101111111111111111111111111
Notice that there is no stepping information or wafer diameter information in this format. Such data will have to be obtained separately and can be entered into WaferMap Convert's dialog to produce a more useful output map file.
This format was submitted to us by Unisem and it appears identical with EM (which is why we group it together) with the exception of the wafer flat location parameter. Instead of Flat/Notch:Down
the Unisem format uses the keyword Orient:
followed by a 1,2,3 or 4.
STIF was created by ST Microelectronics. This map file is complete -- one has both the geometric information needed and the map data. The bin codes are defined in the STIF documentation.
WM - V1.3 - STMicroelectronics Wafer Map File LOT G709059 Lot ID WAFER 01 Wafer ID PRODUCT DA00000-02 Device or Product ID READER G70000 XSTEP 648 UNITS (0.1)MIL X Step Size YSTEP 540 UNITS (0.1)MIL Y Step Size FLAT 180 Flat Orientation XREF -9737 UNITS (0.1)MIL distance from ref die to wafer center YREF -36630 UNITS (0.1)MIL distance from ref die to wafer center XBE TARG1 67 target1 X YBE TARG1 26 target1 Y XBE TARG2 128 target2 X YBE TARG2 137 target2 Y TARGBC 125 bin code (ASCII) for target XFRST 67 ref die location X YFRST 26 ref die location Y PRQUAD 2 probe quadrant (UL) COQUAD 2 coordinate quadrant (UL) DIAM 7874 wafer diameter in mils? XSTRP 22 first die in array X (wrt UL) YSTRP 22 first die in array Y (wrt UL) NULBC 126 NULL Bin (ascii 126) GOODS 12195 number of good die DATE 2017-00-00 TIME 09:00:00 RPSEL 0 SETUP FILE 11111B TEST SYSTEM TEST PROG 11111BB OLIFORMAT SORTNET OLIPATH \\archive$\eg_root\lots\LOT1\xref.waf OPERATOR joe blow PROBE CARD PROBER S01 MERGEDATE 2017-00-00 MERGETIME 12:00:00 WMXDIM=121 number of columns in array WMYDIM=145 number of rows in array ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~zzzzzzzzzzzzzzz~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~zzzzzzzzzzzzzzzzzzzzzzzzz~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~zzzzzzzzzz¡¡¡¡¡¡¡¡¡¡¡zzzzzzzzzz~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~zzzzzzz¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡zzzzzzz~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~zzzzz}¡¡¡¡¡¡¡¡¡¡¡&¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡zzzzzz~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~zzzzz¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡zzzzzz~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~zzzzz¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡zzzzz~~~~~~~
SEMI E142 is a standard developed by SEMI. The format uses XML and is very comprehensive supporting more than one device per map, multiple maps per file, additional information for bin codes. We are primarily concerned with a single map file per layout and a single layout per file.
Header Section
This section identifies the file as a E142 and provides a link to the schema
<?xml version="1.0" encoding="UTF-8"?> <MapData xmlns="urn:semi-org:xsd.E142-1.V1005.SubstrateMap">
Layouts Section
This section defines the physical layout starting with a top level (the wafer) and then defines the size of the child (the device) While some tools may not require it, the Layouts section is a mandatory part of the SEMI E142 specification.
<Layouts> <Layout LayoutId="WaferMap" DefaultUnits="mm" TopLevel="true"> <Dimension X="1" Y="1" /> <DeviceSize X="200.000000" Y="200.000000" /> <ChildLayouts> <ChildLayout LayoutId="A205808" /> </ChildLayouts> </Layout> <Layout LayoutId="A205808" DefaultUnits="mm"> <Dimension X="120" Y="145" /> <DeviceSize X="1.259000" Y="1.542000" /> <StepSize X="1.259000" Y="1.542000" /> <ProductId>G2877F</ProductId> </Layout> </Layouts>
Substrates Section
This section defines a substrate (E142 can support multiple substrate definitions though our software only produces a single substrate per file.)
<Substrates> <Substrate SubstrateType="Wafer" SubstrateId="01"> <LotID>A205808</LotID> <GoodDevices>13199</GoodDevices> </Substrate> </Substrates>
Maps Section
This section defines the map. It first must be associated with a substrate and a layout. We then define the wafer orientation (0 = bottom) and the Origin location for the array.
That information is followed by a list of the reference devices. This particular wafer had 21 reference devices but the typical number is 1,2 or 4.
<SubstrateMaps> <SubstrateMap SubstrateType="Wafer" SubstrateId="01" LayoutSpecifier="WaferMap/A205808"> <Orientation>0</Orientation> <OriginLocation>UpperLeft</OriginLocation> <AxisDirection>DownRight</AxisDirection> <Overlay MapName="SortGrade" MapVersion="1"> <ReferenceDevices> <ReferenceDevice> <Coordinates X="6" Y="39" /> </ReferenceDevice>
Once the reference devices are listed, we then define the meaning of the various bin codes. Each entry will have a bin code, a bin quality attribute, a description and a count.
<BinCodeMap BinType="Ascii" NullBin="."> <BinDefinitions> <BinDefinition BinCode="."> <BinCount>3812</BinCount> <BinQuality>Null</BinQuality> </BinDefinition> <BinDefinition BinCode="F"> <BinCount>368</BinCount> <BinQuality>Fail</BinQuality> </BinDefinition> <BinDefinition BinCode="1"> <BinCount>13199</BinCount> <BinQuality>Pass</BinQuality> </BinDefinition> <BinDefinition BinCode="M"> <BinCount>21</BinCount> <BinQuality>Ref</BinQuality> </BinDefinition> </BinDefinitions>
The final section of the E142 file has the actual map data. This is a 2D array of bin codes.
<BinCode>....................................................FFFFFFFFFFFFFFF.....................................................</BinCode> <BinCode>...............................................1111111111111111111111111................................................</BinCode> <BinCode>............................................F111111111111111111111111111111.............................................</BinCode> <BinCode>.........................................F111111111111111111111111111111111111..........................................</BinCode> <BinCode>.......................................F1111111111111111111111111111111111111111........................................</BinCode> <BinCode>.....................................F11111111111111111111111111111111111111111111......................................</BinCode>
The SINF [Simplified Integrator Nested Format] spec consists of a header section followed by Row data. The basic structure is shown below:
Header
DEVICE:xxx identification assigned by originator LOT:xxx identification assigned by originator WAFER:xxx identification assigned by originator FNLOC:180 wafer flat position (0=TOP,90=RIGHT,180=BOT 270=LEFT) ROWCT:62 number of rows COLCT:63 number of columns BCEQU:01 List of Bin Codes that are good die REFPX: x-coord of reference die (optional) REFPY: y-coord of reference die (optional) DUTMS:mm die units of measurement (mm or mil) XDIES:2.945 step along X YDIES:2.945 step along Y
Row Data
Following the header is row data. It is identified by the keyword RowData: Here are the various hex values one will find in the row data:
00-0A good die (each die type gets its own unique identifier starting at 00, 01, 02 ...) reserve 0A for the die at wafer center. 0B-F0 bad die __ no die (underscore-underscore) used as a placeholder in the matrix. @@ uninspected die FD-FE edge die (optional) FF reference die (typically a die that is visually different)
Row data lines look like this:
RowData:__ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ 01 01 01 01 __ __ __ __ __ 01 01 01 01 01 01 01 01 RowData:__ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 RowData:__ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
Reference Die
There are two ways of locating the reference die:
a) a die marked with bin code FF.
b) REFPX:
and REFPY:
values in the header.
The coordinate system when REFPX:
and REFPY:
is used is shown below: